Course Code	Course Title	C	H	I	E	T
17U5MME1	Probability Theory	7	6	25	75	100

Learning Objectives

- To impart the knowledge of fundamental concepts in Probability \& Statistics to solve applied problems.
- To acquire the knowledge of various distributions and its applications.

Learning Outcomes

On satisfying the requirement of this course, students will be able to

- Extend and formalise knowledge of the theory of probability and random variables.
- Compute conditional probabilities directly and using Baye's theorem and check for independence of events.
- Perform probability calculations relating to probability distributions for discrete random variables.
- Perform probability calculations relating to probability density functions for continuous random variables.
- Compute Mathematical Expectation and variance.
- Apply various distributions to solve real life problems.

Unit I Probability

Introduction- Sample space - Events- The probability of an event- Some rules of probability Conditional probability- Independent events-Baye's theorem - Problems.

Unit II Probability distribution \& Probability density function

Introduction- Probability distribution - Continuous random variables - Probability density functions Multivariate distribution - Marginal distributions - Conditional distributions.

Unit III Mathematical Expectations

Introduction - Expected value of random variable- Moments -Chebychev's theorem - Moment generating functions - Product moments - Moments of linear combination of random variables Conditional expectations.

Unit IV Special Probability Distribution

Introduction - Discrete uniform distributions, Bernoulli's distribution -Binomial distribution Negative binomial and Geometric distribution- Hyper geometric distribution- Poisson distribution Multinomial distribution - The Multivariance Hyper geometric distribution.

Unit V Special Probability Densities

Introduction - Uniform distribution - Gamma, Exponential and Chi-square distribution - Beta distribution- Normal distribution - Normal approximation to Binomial distribution.

Text book:

John E. Freund's, Irwin miller, and Marylees Miller, Mathematical statistics with applications, $7^{\text {th }}$ Edition 2007, Pearson.

Chapters: 2(2.1-2.8), 3(3.1-3.7), 4(4.2-4.8), 5(5.2-5.7), 6(6.2-6.6).

Reference Books:

1. T. Veerarajan, Probability and Random Processes, $11^{\text {th }}$ Reprint 2007, Tata McGraw - Hill Publishing Company limited.
2. S.C. Gupta and V.K. Kapoor,Fundamentals of Mathematical statistics, 1996, S. Chand \& Sons.
